
Notes By – Rajan Shukla

Topic 5
Java Applets & Graphics Programming

Total Marks- 20

Specific Objectives:

The students will be able to write interactive applets and make use of graphics in

programming.
They will also learn to change the background and the foreground color and to use the

different fonts.

Contents:

5.1 Introduction to applets Applet, Applet life cycle (skeleton), Applet tag, Adding Applet
To HTML file, passing parameter to applet, embedding <applet>tags in java code, adding
controls to applets.

5.2 Graphics Programming Graphics classes, lines, rectangles, ellipse, circle, arcs,

polygons, color & fonts, setColor(), getColor(), setForeGround(), setBackGround(), font

class, variable defined by font class: name, pointSize, size, style, font methods: getFamily(),

getFont(), getFontname(), getSize(), getStyle(), getAllFonts() &

getavailablefontfamilyname() of the graphics environment class.

Notes By – Rajan Shukla

java.applet.Applet

Topic 5 Java Applets & Graphics Programming

5.1.Introduction to applets

Applet Basics-

Basically, an applet is dynamic and interactive java program that inside the web

page or applets are small java programs that are primarily used in internet computing. The
java application programs run on command prompt using java interpreter whereas

the java applets can be transported over the internet form one computer to another and run

using the appletviewer or any web browser that supports java.

An applet is like application program which can perform arithmetic

operations, display graphics, play sounds accept user input, create animation and

play interactive games. To run an applet, it must be included in HTML tags for web page.

Web browser is a program to view web page.

Every applet is implemented by creating sub class of Applet class.

Following diagram shows the inheritance hierarchy of Applet class.

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Panel

Fig. Chain of classes inherited by Applet class in java

5.1.1 Differentiate between applet and application (4 points). [W-14, S-15, W-15]

Applet Application

Applet does not use main() method for

initiating execution of code

Application use main() method for initiating

execution of code

Applet cannot run independently Application can run independently

Applet cannot read from or write to files in

local computer

Applet cannot communicate with other

servers on network

Applet cannot run any program from local

computer.

Applet are restricted from using libraries

from other language such as C or C++

Application can read from or write to files in

local computer

Application can communicate with other

servers on network

Application can run any program from local

computer.

Application are not restricted from using

libraries from other language

Notes By – Rajan Shukla

5.1.2 Applet life Cycle [W-14, S-15]

Applets are small applications that are accessed on an Internet

server, transported over the Internet, automatically installed, and run as part of

a web document.

The applet states include:

Born or initialization state

Running state

Idle state

Dead or destroyed state
a) Born or initialization state [S-15]

Applet enters the initialization state when it is first loaded. This is done
by

calling the init() method of Applet class. At this stage the following can be done:

Create objects needed by the applet

Set up initial values

Load images or fonts

Set up colors

Initialization happens only once in the life time of an applet.

public void init()
{
//implementation

}

b) Running state: [S-15]

Applet enters the running state when the system calls the start() method

of Applet class. This occurs automatically after the applet is initialized. start() can also

be called if the applet is already in idle state. start() may be called more than once.

start() method may be overridden to create a thread to control the applet.

public void start()

{

//implementation

}

Notes By – Rajan Shukla

c) Idle or stopped state:

An applet becomes idle when it is stopped from running. Stopping

occurs automatically when the user leaves the page containing the currently running

applet. stop() method may be overridden to terminate the thread used to run the applet.

public void stop()

{

//implementation

}

d) Dead state:

An applet is dead when it is removed from memory. This occurs automatically

by invoking the destroy method when we quit the browser. Destroying stage

occurs only once in the lifetime of an applet. destroy() method may be overridden

to clean up resources like threads.

public void destroy()

{

//implementation

}

e) Display state: [S-15]

Applet is in the display state when it has to perform some output operations on

the screen. This happens after the applet enters the running state. paint() method is

called for this. If anything is to be displayed the paint() method is to be overridden.

public void paint(Graphics g)
{

//implementation

}

5.1.3 Applet Tag & Attributes [W-15, S-16]

APPLET Tag:
The APPLET tag is used to start an applet from both an HTML document and

from an applet viewer.

The syntax for the standard APPLET tag:

<APPLET

[CODEBASE = codebaseURL]

CODE = appletFile
[ALT = alternateText]
[NAME = appletInstanceName]

WIDTH = pixels HEIGHT = pixels

[ALIGN = alignment]

[VSPACE = pixels] [HSPACE = pixels]>

[< PARAM NAME = AttributeName1 VALUE = AttributeValue>]

[<PARAM NAME = AttributeName2 VALUE = AttributeValue>]

. . .

</APPLET>

Notes By – Rajan Shukla

CODEBASE is an optional attribute that specifies the base URL of the applet code or

the directory that will be searched for the applet‟s executable class file.

CODE is a required attribute that give the name of the file containing your applet‟s

compiled class file which will be run by web browser or appletviewer.

ALT: Alternate Text. The ALT tag is an optional attribute used to specify a short text

message that should be displayed if the browser cannot run java applets.

NAME is an optional attribute used to specifies a name for the applet instance.

WIDTH AND HEIGHT are required attributes that give the size(in pixels) of the

applet display area.

ALIGN is an optional attribute that specifies the alignment of the applet.

The possible value is: LEFT, RIGHT, TOP, BOTTOM, MIDDLE,

BASELINE, TEXTTOP, ABSMIDDLE, and ABSBOTTOM.

VSPACE AND HSPACE attributes are optional, VSPACE specifies the space, in

pixels, about and below the applet. HSPACE VSPACE specifies the space, in

pixels, on each side of the applet

PARAM NAME AND VALUE: The PARAM tag allows you to specifies applet-

specific arguments in an HTML page applets access there attributes with the

get Parameter()method.

Q. Explain <PARAM> tag of applet with suitable example. [S-15]

To pass parameters to an applet <PARAM… > tag is used. Each

<PARAM…> tag has a name attribute and a value attribute. Inside the applet code,

the applet can refer to that parameter by name to find its value.

The syntax of <PARAM…> tag is as follows

<PARAM NAME = name1 VALUE = value1>

To set up and handle parameters, two things must be done.

1. Include appropriate <PARAM..> tags in the HTML document.

2. Provide code in the applet to parse these parameters.

Parameters are passed on an applet when it is loaded. Generally init() method

in the applet is used to get hold of the parameters defined in the <PARAM…> tag.

The getParameter() method, which takes one string argument representing the

name of the parameter and returns a string containing the value of that parameter.

Example

import java.awt.*;

import java.applet.*;

public class hellouser extends Applet

Notes By – Rajan Shukla

{

String str;

public void init()

{

str = getParameter("username");

str = "Hello "+ str;

}

public void paint(Graphics g)

{

g.drawString(str,10,100);

}

}

<HTML>

<Applet code = ―hellouser.class‖ width = 400 height = 400>

<PARAM NAME = "username" VALUE = abc>

</Applet>

</HTML>

Q. How can parameter be passed to an applet? Write an applet to accept user

name in the form of parameter and print „Hello<username>‟. [W-15]

Passing Parameters to Applet

User defined parameters can be supplied to an applet using

<PARAM…..> tags. PARAM tag names a parameter the Java applet needs to

run, and provides a value for that parameter.

PARAM tag can be used to allow the page designer to specify different colors,

fonts, URLs or other data to be used by the applet.

To set up and handle parameters, two things must be done.

1. Include appropriate <PARAM..>tags in the HTML document.

The Applet tag in HTML document allows passing the arguments using param tag.

The syntax of <PARAM…> tag

<Applet code=”AppletDemo” height=300 width=300>

<PARAM NAME = name1 VALUE = value1>

</Applet>

NAME: attribute name

VALUE: value of attribute named by corresponding PARAM NAME.

2. Provide code in the applet to parse these parameters.

The Applet access their attributes using the getParameter method.

The syntax is : String getParameter(String name);

Notes By – Rajan Shukla

Program for an applet to accept user name in the form of parameter and print

„Hello<username>‟ [W-15]

import java.awt.*;

import java.applet.*;

public class hellouser extends Applet

{

String str;

public void init()

{

str = getParameter("username");

str = "Hello "+ str;
}

public void paint(Graphics g)
{

g.drawString(str,10,100);

}

}

<HTML>

<Applet code = ―hellouser.class‖ width = 400 height = 400>

<PARAM NAME = "username" VALUE = abc>

</Applet>

</HTML>

5.2. Graphics Programming

Graphics can be drawn with the help of java. java applets are written to

draw lines, figures of different shapes, images and text in different styles even

with the colours in display.

Every applet has its own area of the screen known as canvas, where it creates the

display in the area specified the size of applet‘s space is decided by the attributes of

<APPLET...> tag.

A java applet draws graphical image inside its space using the coordinate system

shown in following fig., which shows java‘s coordinate system has the origin (0, 0) in

the upper-left corner, positive x values are to be right, and positive y values are to the

bottom. The values of coordinates x and y are in pixels.

X

(0, 0)

Y

Notes By – Rajan Shukla

Q. Write a simple applet which display message „Welcome to Java‟. [W-15]

Program:

import java. applet.*;

import java.awt.*;

public class Welcome extends Applet

{

public void paint(Graphics g)

{

g.drawString(―Welcome to java‖,25,50);

}

}

/*<applet code= WelcomeJava width= 300 height=300>

</applet>*/

Step to run an Applet

1. Write a java applet code and save it with as a class name declared in a program by

extension as a .java.

e.g. from above java code file we can save as a Welcome.java

2. Compile the java file in command prompt jdk as shown below

C:\java\jdk1.7.0\bin> javac Welcome.java

3. After successfully compiling java file, it will create the .class file, e.g

Welcome.class. then we have to write applet code to add this class into applet.

4. Applet code

<html>

<Applet code= ― Welcome.class‖ width= 500 height=500>

</applet>

</html>

5. Save this file with Welcome.html in ‗bin‘ library folder.

6. Now write the following steps in command prompt jdk.

C:\java\jdk1.7.0\bin> appletviewer Welcome.java

C:\java\jdk1.7.0\bin> appletviewer Welcome.html

(Shows output in applet viewer)

OR

C:\java\jdk1.7.0\bin> Welcome.html

(Shows output in internet browser)

5.2.1. Graphics Class

The Graphics class of java includes methods for drawing different types

of shapes, from simple lines to polygons to text in a variety of fonts.

Notes By – Rajan Shukla

The paint() method and a Graphics object is used to display text. To

draw shapes, drawing methods in Graphics class is used which arguments representing

end points, corners, or starting locations of a shape as a values in the applet‘s

coordinate system.

Method Description

clearRect() Erases a rectangular area of the canvas

copyArea() Copies a rectangular area of the canvas to another area

drawArc() Draws a hollow arc.

drawLine() Draws a straight line

drawOval() Draws a hollow oval

drawPolygon() Draws a hollow polygon

drawRect() Draws a hollow rectangle

drawRoundRect() Draws a hollow rectangle with rounded corners.

drawstring() Displays a text string

fillArc() Draws a filled arc

fillOval() Draws a filled arc

fillPolygon() Draws a filled polygon

fillRect() Draws a filled rectangle

fillRoundRect() Draws filled rectangle with rounded corners

getColor() Retrieves the current drawing color

getFont() Retrieves the currently used font

getFontMetrics() Retrieves information about the current font.

setColor() Sets the drawing color

setFont() Seta fonts.

5.2.2. drawString() [S-15]

Displaying String:

drawString() method is used to display the string in an applet window

Syntax:

Example:

void drawString(String message, int x, int y);

where message is the string to be displayed beginning at x, y

g.drawString(―WELCOME‖, 10, 10);

Notes By – Rajan Shukla

5.2.3. Lines and Rectangle.

5.2.3.1. drawLine()

The drawLine () method is used to draw line which takes two pair
of

coordinates (x1,y1) and (x2, y2) as arguments and draws a line between

them. The graphics object g is passed to paint() method.

The syntax is

g.drawLine(x1,y1,x2,y2);

e.g. g.drawLine(20,20,80,80);

5.2.3.2. drawRect() [W-14, S-15,W-15, S-16]

The drawRect() method display an outlined rectangle

Syntax: void drawRect(int top, int left, int width, int height)

This method takes four arguments, the first two represents the x and y

co- ordinates of the top left corner of the rectangle and the remaining two represent the

width and height of rectangle.

Example: g.drawRect(10,10,60,50);

Q. Design an Applet program which displays a rectangle filled with red color

and message as “Hello Third year Students” in blue color. [S-16]

Program-

import java.awt.*;

import java.applet.*;

public class DrawRectangle extends Applet

{

public void paint(Graphics g)

{

g.setColor(Color.red);

g.fillRect(10,60,40,30);

g.setColor(Color.blue);

g.drawString("Hello Third year Students",70,100);

}

}

/* <applet code="DrawRectangle.class" width="350" height="300"> </applet> */

Notes By – Rajan Shukla

5.2.4. Circle and Ellipse

5.2.4.1. drawOval() [W-14, S-15, W-15, S-16]

To draw an Ellipses or circles used drawOval() method can be used.

Syntax: void drawOval(int top, int left, int width, int height)

The ellipse is drawn within a bounding rectangle whose upper-left corner is

specified by top and left and whose width and height are specified by width

and height to draw a circle or filled circle, specify the same width and height the

following program draws several ellipses and circle.

Example: g.drawOval(10,10,50,50);

5.2.4.2. fillOval () [W-14]

Draws an oval within a bounding rectangle whose upper left corner is

specified by top, left. Width and height of the oval are specified by width and height.

Syntax- void fillOval(int top, int left, int width, int height):

Example g.fillOval(10,10,50,50);

Q. Write a simple applet program which display three concentric circle. [S-16]

Program-
import java.awt.*;
import java.applet.*;

public class CircleDemo extends Applet

{

public void paint (Graphics g)

{

g.drawOval(100,100,190,190);

g.drawOval(115,115,160,160);

g.drawOval(130,130,130,130);

}

}

/*<applet code=‖CircleDemo.class‖ height=300 width=200>

</applet>*/

(OR)

HTML Source:

<html> <applet code=‖CircleDemo.class‖ height=300 width=200>

</applet>

</html>

Notes By – Rajan Shukla

Q. Write a program to design an applet to display three circles filled with three

different colors on screen. [W-14, W-15]

Program-

import java.awt.*;

import java.applet.*;

public class myapplet extends Applet

{

public void paint(Graphics g)

{ g.setColor(Color.red);

g.fillOval(50,50,100,100);

g.setColor(Color.green);

g.fillOval(50,150,100,100);

g.setColor(Color.yellow);

g.fillOval(50,250,100,100);

}

}

/*<applet code=myapplet width= 300 height=300>

</applet>*/

Output

5.2.5. Drawing Arcs

5.2.5.1. drawArc() [S-15, W-15]

It is used to draw arc

Syntax:

void drawArc(int x, int y, int w, int h, int start_angle, int sweep_angle);

Notes By – Rajan Shukla

where x, y starting point, w& h are width and height of arc, and start_angle is

starting angle of arc sweep_angle is degree around the arc

Example:

g.drawArc(10, 10, 30, 40, 40, 90);

5.2.6. Drawing polygons

5.2.6.1. drawPolygon() [W-14, W-15]

drawPolygon() method is used to draw arbitrarily shaped figures.

Syntax- void drawPolygon(int[] xPoints, int[] yPoints, int numPoints):

The polygon‟s end points are specified by the co-ordinates pairs

contained within the x and y arrays. The number of points define by x and y is

specified by numPoints.

Example-
int x[] = {10, 170, 80};

int y[] = {20, 40, 140};

int n = 3;

g.drawPolygon(x, y, n);

Q. Write the syntax and example for each of following graphics methods:

1) drawPoly () 2) drawRect () 3) drawOval () 4) fillOval ()

For syntax refer above 5.2.3.2 and all........

Example for including all methods in a one program

import java.applet.*;

import java.awt.*;

public class DrawGraphics extends Applet

{

public void paint(Graphics g)

{

int x[] = {10, 170, 80};

int y[] = {20, 40, 140};

int n = 3;

g.drawPolygon(x, y, n);
g.drawRect(10, 150,100, 80);
g.drawOval(10, 250, 100, 80);
g.fillOval(10, 350, 100, 80);
}

}

/*

<applet code = DrawGraphics.class height = 500 width = 400>

</applet>*/

Notes By – Rajan Shukla

5.2.7. Setting color of an Applet

Background and foreground color of an applet can be set by using followings
methods

void setBackground(Color.newColor)

void setForeground (Color.newColor)

where newColor specifies the new color. The class color defines the constant

for specific color listed below.

Example

Color.black Color.white Color.pink Color.yellow

Color.lightGray Color.gray Color.darkGray Color.red

Color.green Color.magenda Color.orange Color.cyan

setBackground(Color.red);

setForeground (Color.yellow);

The following methods are used to retrieve the current background and foreground
color.

Color getBackground()

Color getForeground()

5.2.8. Font class

A font determines look of the text when it is painted. Font is used while painting text

on a graphics context & is a property of AWT component.

The Font class defines these variables:

Variable Meaning

String name Name of the font

float pointSize Size of the font in points

int size Size of the font in point

int style Font style

5.2.8.1. Use of font class [W-14, S-15]

The Font class states fonts, which are used to render text in a visible way.

It is used to set or retrieve the screen font.

Syntax to create an object of Font class. [W-14]

To select a new font, you must first construct a Font object that describes that

font. Font constructor has this general form:

Notes By – Rajan Shukla

FontObj) :

Font(String fontName, int fontStyle, int pointSize)

fontName specifies the name of the desired font. The name can be specified

using either the logical or face name.

All Java environments will support the following fonts:

Dialog, DialogInput, Sans Serif, Serif, Monospaced, and Symbol. Dialog is the

font used by once system‟s dialog boxes.

Dialog is also the default if you don‟t explicitly set a font. You can also use

any other fonts supported by particular environment, but be careful—these other fonts

may not be universally available.

The style of the font is specified by fontStyle. It may consist of one or more of

these three constants:

Font.PLAIN, Font.BOLD, and Font.ITALIC. To combine styles, OR

them together.

For example,

Font.BOLD | Font.ITALIC specifies a bold, italics style.

The size, in points, of the font is specified by pointSize.

To use a font that you have created, you must select it using setFont(), which

is defined by Component.

It has this general form:

void setFont(Font fontObj)

Here, fontObj is the object that contains the desired font

5.2.8.2. Methods of font class

Q. Describe any three methods of font class with their syntax and example

of each. [W-14, S-15]

Sr.

No
Methods Description

1 static Font decode(String str) Returns a font given its name.

boolean equals(Object Returns true if the invoking object contains the

2 same font as that specified by FontObj.Otherwise,
it returns false.

3 String toString() Returns the string equivalent of the invoking font.

4
String getFamily()

Returns the name of the font family to which the

invoking font belongs.

static Font getFont(String

5 property)

6 static Font getFont(String

property,Font defaultFont)

Returns the font associated with the system

property specified by property. null is returned if
property does not exist.

Returns the font associated with the System

property specified by property.

The font specified by defaultFont is returned if

property does not exist.

7 String getFontName() Returns the face name of the invoking font.

8 String getName() Returns the logical name of the invoking font.

Notes By – Rajan Shukla

9 int getSize() Returns the size, in points, of the invoking font.

10 int getStyle() Returns the style values of the invoking font.

11 int hashCode()
Returns the hash code associated with the

invoking object.

12 boolean isBold()
Returns true if the font includes the BOLD style

value. Otherwise, false is returned.

13 boolean isItalic()
Returns true if the font includes the ITALIC style

value. Otherwise, false is returned.

14 boolean isPlain()
Returns true if the font includes the PLAIN style

value. Otherwise, false is returned.

Example:-

//program using equals method

import java.awt.*;

import java.applet.*;

public class ss extends Applet

{

public void paint(Graphics g)
{
Font a = new Font ("TimesRoman", Font.PLAIN, 10);

Font b = new Font ("TimesRoman", Font.PLAIN, 10);

// displays true since the objects have equivalent settings

g.drawString(""+a.equals(b),30,60);

}

}

/*<applet code=‖ss.class‖ height=200 width=200>

</applet>*/

// program using getFontName,getFamily(),getSize(),getStyle(),.getName()

import java.awt.*;

import java.applet.*;

public class font1 extends Applet

{
Font f, f1;

String s, msg;

String fname;

String ffamily;

int size;

int style;

public void init()

{

Notes By – Rajan Shukla

f= new Font("times new roman",Font.ITALIC,20);

setFont(f);

msg="is interesting";

s="java programming";

fname=f.getFontName();

ffamily=f.getFamily();

size=f.getSize();

style=f.getStyle();

String f1=f.getName();

}

public void paint(Graphics g)

{

g.drawString("font name"+fname,60,44);

g.drawString("font family"+ffamily,60,77);

g.drawString("font size "+size,60,99);

g.drawString("fontstyle "+style,60,150);

g.drawString("fontname "+f1,60,190);

}
}

/*<applet code=font1.class height=300 width=300>

</applet>*/

Q. Write method to set font of a text and describe its parameters. [S-16]

The AWT supports multiple type fonts emerged from the domain of traditional

type setting to become an important part of computer-generated documents and

displays. The AWT provides flexibility by abstracting font-manipulation

operations and allowing for dynamic selection of fonts.

Fonts have a family name, a logical font name, and a face name. The family

name is the general name of the font, such as Courier. The logical name specifies a

category of font, such as Monospaced. The face name specifies a specific font, such as

Courier Italic To select a new font, you must first construct a Font object that

describes that font.

One Font constructor has this general form:

Font(String fontName, intfontStyle, intpointSize)

To use a font that you have created, you must select it using setFont(), which

is defined by Component.

It has this general form:

void setFont(Font fontObj)

Example
import java.applet.*;

import java.awt.*;
import java.awt.event.*;

public class SampleFonts extends Applet

{

int next = 0;

Font f;

String msg;

Notes By – Rajan Shukla

public void init()

{

f = new Font("Dialog", Font.PLAIN, 12);

msg = "Dialog";

setFont(f);

public void paint(Graphics g)

{

g.drawString(msg, 4, 20);

}

}

Q. State purpose of get Available Font Family Name () method of

graphics environment class.

Purpose of getAvailableFontFamilyName() method:
It returns an array of String containing the names of all font families in

this Graphics Environment localized for the specified locale

Syntax:

public abstract String[] getAvailableFontFamilyNames(Locale 1)

Parameters:
l - a Locale object that represents a particular geographical, political, or

cultural region. Specifying null is equivalent to specifying Locale.getDefault().

Or

String[] getAvailableFontFamilyNames()

It will return an array of strings that contains the names of the available font families

Important Questions:-

4 Marks Questions:-

1) Write syntax and example of 1) drawString () 2) drawRect () ; 3) drawOval ()

4) drawArc ().
2) Describe following states of applet life cycle : a) Initialization state. b) Running state.

c) Display state
3) State the use of font class. Describe any three methods of font class with their syntax

and example of each.
4) Differentiate applet and application with any four points.
5) State syntax and explain it with parameters for : i)drawRect () ii) drawOral ()
6) Design an Applet program which displays a rectangle filled with red color and

message as ―Hello Third year Students‖ in blue color.

7) Describe applet life cycle with suitable diagram.

8) Differentiate between applet and application (any 4 points).

9) Write a program to design an applet to display three circles filled with three different

colors on screen.

10) Explain all attributes available in < applet > tag.

Notes By – Rajan Shukla

6 & 8 Marks Questions:-

1) Explain <PARAM> Tag of applet with suitable example.

2) State the use of font class. Describe any three methods of font class with their

syntax and example of each.
3) Write a simple applet program which display three concentric circle.
4) Write method to set font of a text and describe its parameters.
5) Explain <applet> tag with its major attributes only. State purpose of get Available

Font Family Name () method of graphics environment class.

6) Design an applet which displays three circles one below the other and fill them red,

green and yellow color respectively.

7) Write the syntax and example for each of following graphics methods : 1) drawPoly (

) 2) drawRect () 3) drawOval () 4) fillOval ()

8) State the use of Font class. Write syntax to create an object of Font class.

9) Describe any 3 methods of Font class with their syntax and example of each.

10) Write syntax and example of following Graphics class methods : (i) drawOval() (ii)

drawPolygon() (iii) drawArc() (iv) drawRect()

11) Differentiate between applet and application and also write a simple applet

which display message ‗Welcome to Java‘.

12) How can parameters be passed to an applet ? Write an applet to accept user name in

the form of parameter and print ‗Hello < username >‘.

Notes By – Rajan Shukla

Topic 6- File I/O & collection frame work

Total Marks- 12

6.1. Stream Classes

1. What are stream classes ? List any two input stream classes from character stream

[S-15, S-16]

Definition:

The java. IO package contain a large number of stream classes that provide

capabilities for processing all types of data. These classes may be categorized into two

groups based on the data type on which they operate.

1. Byte stream classes that provide support for handling I/O operations on bytes.

2. Character stream classes that provide support for managing I/O operations on

characters.

Character Stream Class can be used to read and write 16-bit Unicode

characters. There are two kinds of character stream classes, namely, reader stream classes

and writer stream classes

Fig. Hierarchy of java stream classes

Notes By – Rajan Shukla

Reader stream classes:-

It is used to read characters from files. These classes are functionally similar to

the input stream classes, except input streams use bytes as their fundamental unit of

information while reader streams use characters

Input Stream Classes

1. BufferedReader

2. CharArrayReader

3. InputStreamReader

4. FileReader

5. PushbackReader

6. FilterReader

7. PipeReader

8. StringReader

2. What are streams ? Write any two methods of character stream classes. [W-15]

Java programs perform I/O through streams. A stream is an abstraction that either

produces or consumes information (i.e it takes the input or gives the output). A stream is

linked to a physical device by the Java I/O system.

All streams behave in the same manner, even if the actual physical devices

to which they are linked differ. Thus, the same I/O classes and methods can be applied to

any type of device.

Java 2 defines two types of streams: byte and character.

Byte streams provide a convenient means for handling input and output of bytes.

Byte streams are used, for example, when reading or writing binary data.

Character streams provide a convenient means for handling input and output

of characters.

They use Unicode and, therefore, can be internationalized. Also, in some

cases, character streams are more efficient than byte streams.

The Character Stream Classes

Character streams are defined by using two class hierarchies. At the top are two

abstract classes, Reader and Writer. These abstract classes handle Unicode

character streams. Java has several concrete subclasses of each of these.

Methods of Reader Class

1) void mark(int numChars) : Places a mark at the current point in the input stream that

will remain valid until numChars characters are read.

2) boolean markSupported() : Returns true if mark() / reset() are supported on this

stream.

3) int read() :Returns an integer representation of the next available character from the

invoking input stream. –1 is returned when the end of the file is encountered.

Notes By – Rajan Shukla

4) int read(char buffer[]) : Attempts to read up to buffer. Length characters into buffer

and returns the actual number of characters that were successfully read. –1 is returned when

the end of the file is encountered.

5) abstract int read(char buffer[],int offset,int numChars): Attempts to read up

to numChars characters into buffer starting at buffer[offset], returning the number of

characters successfully read.–1 is returned when the end of the file is encountered.

6) boolean ready(): Returns true if the next input request will not wait. Otherwise, it

returns false.

7) void reset(): Resets the input pointer to the previously set mark.

8) long skip(long numChars) :- Skips over numChars characters of input, returning the

number of characters actually skipped.

9) abstract void close() :- Closes the input source. Further read attempts will generate an

IOException

Writer Class

Writer is an abstract class that defines streaming character output. All of the methods

in this class return a void value and throw an IOException in the case of error

Methods of Writer class are listed below: -
1) abstract void close() : Closes the output stream. Further write attempts will generate

an IOException.

2) abstract void flush() : Finalizes the output state so that any buffers are cleared. That

is, it flushes the output buffers.

3) void write(intch): Writes a single character to the invoking output stream. Note that the

parameter is an int, which allows you to call write with expressions without having to cast

them back to char.

4) void write(char buffer[]): Writes a complete array of characters to the

invoking output stream

5) abstract void write(char buffer[],int offset, int numChars) :- Writes a subrange of

numChars characters from the array buffer, beginning at buffer[offset] to the invoking output

stream.

6) void write(String str): Writes str to the invoking output stream.

7) void write(String str, int offset,int numChars): Writes a sub range of numChars

characters from the array str, beginning at the specified offset.

[**Note: any two methods from above list to be considered]

Notes By – Rajan Shukla

3. What is use of stream classes ? Write any two methods FileReader class.[W-14]

An I/O Stream represents an input source or an output destination.

A stream can represent many different kinds of sources and destinations, including
disk files, devices, other programs, and memory arrays.

Streams support many different kinds of data, including simple bytes,
primitive data types, localized characters, and objects.
Some streams simply pass on data; others manipulate and transform the data

in useful ways. Java‟s stream based I/O is built upon four abstract

classes: InputStream, OutputStream, Reader, Writer.

They are used to create several concrete stream subclasses, the top level classes
define the basic functionality common to all stream classes.

InputStream and OutputStream are designed for byte streams and used to
work with bytes or other binary objects.

Reader and Writer are designed for character streams and used to work with
character or string.

1. public int read()throws IOException - Reads a single character.

2. public int read(char[] cbuf, int offset, int length) throws IOException -

Reads characters into a portion of an array.

3. public void close()throws IOException - Closes the stream and releases any

system resources associated with it. Once the stream has been closed, further

read(), ready(), mark(), reset(), or skip() invocations will throw an IOException.

Closing a previously closed stream has no effect

4. public boolean ready()throws IOException - Tells whether this stream is ready to

be read. An InputStreamReader is ready if its input buffer is not empty, or if bytes

are available to be read from the underlying byte stream

5. public void mark(int readAheadLimit) throws IOException -Marks the present

position in the stream. Subsequent calls to reset() will attempt to reposition

the stream to this point. Not all character-input streams support the mark()

operation.

6. public void reset()throws IOException - Resets the stream. If the stream has been

marked, then attempt to reposition it at the mark. If the stream has not

been marked, then attempt to reset it in some way appropriate to the particular

stream, for example by repositioning it to its starting point. Not all character-input

streams support the reset() operation, and some support reset() without supporting

mark().

4. Write any two methods of File and FileInputStream class each.[S-15, W-15]

File Class Methods

1. String getName() - returns the name of the file.

2. String getParent() - returns the name of the parent directory.

Notes By – Rajan Shukla

3. boolean exists() - returns true if the file exists, false if it does not.

4. void deleteOnExit() -Removes the file associated with the invoking object when

the Java Virtual Machine terminates.

5. boolean isHidden()-Returns true if the invoking file is hidden. Returns false

otherwise.

FileInputStream Class Methods:

1. int available()- Returns the number of bytes of input currently available for

reading.

2. void close()- Closes the input source. Further read attempts will generate an

IOException.

3. void mark(int numBytes) -Places a mark at the current point in the inputstream

that will remain valid until numBytes bytes are read.

4. boolean markSupported() -Returns true if mark()/reset() are supported by the

invoking stream.

5. int read()- Returns an integer representation of the next available byte of input. –1

is returned when the end of the file is encountered.

6. int read(byte buffer[])- Attempts to read up to buffer.length bytes into buffer and

returns the actual number of bytes that were successfully read. –1 is returned when the end of

the file is encountered.

5. Explain serialization in relation with stream class. [W-14,W-15, S-16]

Serialization is the process of writing the state of an object to a byte stream. This is

useful when you want to save the state of your program to a persistent storage area, such

as a file. At a later time, you may restore these objects by using the process of

deserialization.

Serialization is also needed to implement Remote Method Invocation (RMI). RMI

allows a Java object on one machine to invoke a method of a Java object on a different

machine. An object may be supplied as an argument to that remote method. The sending

machine serializes the object and transmits it. The receiving machine deserializes it.

Example:

Assume that an object to be serialized has references to other objects, which,

inturn, have references to still more objects. This set of objects and the

relationships among them form a directed graph. There may also be circular

references within this object graph. That is, object X may contain a reference to

object Y, and object Y may contain a reference back to object X. Objects may also

contain references to themselves. The object serialization and deserialization facilities

have been designed to work correctly in these scenarios. If you attempt to serialize an

object at the top of an object graph, all of the other referenced objects are recursively

located and serialized. Similarly, during the process of deserialization, all of these objects

and their references are correctly restored.

Notes By – Rajan Shukla

6. Write a program to copy contents of one file to another file using character stream

class.[S-15]

import java.io.*;

class CopyData

{

public static void main(String args[])

{

//Declare input and output file stream

FileInputStream fis= null; //input stream

FileOutputStream fos=null; //output Stream

//Declare a variable to hold a byte

byte byteRead;

try

{

// connect fis to in.dat

fis=new FileInputSream(―in.dat‖);

// connect fos to out.dat

fos= new FileOutputStream(―out.dat‖);

//reading bytes from in.dat and write to out.dat

do

{

byteRead =(byte)fis.read();

fos.write(byteRead);

}

while(byteRead != -1);

}

Catch(FileNotFoundException e)

{

System.out.println(―file not found‖);

}

Catch(IOException e)

{

System.out.pritln(e.getMessage());

}

finally // close file

{

Notes By – Rajan Shukla

try

{

fis.close();

fos.close();

}

Catch(IOException e)

{ }

}

}

}

7. What is use of ArrayList Class ? State any three methods with their use from

ArrayList.[W-15, S-16]

Use of ArrayList class:

1. ArrayListsupports dynamic arrays that can grow as needed.

2. ArrayListis a variable-length array of object references. That is, an ArrayListcan

dynamically increase or decrease in size. Array lists are created with an initial size.

When this size is exceeded, the collection is automatically enlarged. When objects

are removed, the array may be shrunk.

Methods of ArrayList class :

1. void add(int index, Object element) Inserts the specified element at the specified

position index in this list. Throws IndexOutOfBoundsException if the specified index

is is out of range (index < 0 || index >size()).

2. boolean add(Object o) Appends the specified element to the end of this list.

3. booleanaddAll(Collection c) Appends all of the elements in the

specified collection to the end of this list, in the order that they are returned by the

specified collection's iterator. Throws NullPointerException if the specified collection

is null.

4. booleanaddAll(int index, Collection c) Inserts all of the elements in the specified

collection into this list, starting at the specified position. Throws NullPointerException

if the specified collection is null.

5. void clear() Removes all of the elements from this list.

6. Object clone() Returns a shallow copy of this ArrayList.

Notes By – Rajan Shukla

7. boolean contains(Object o) Returns true if this list contains the specified element.

More formally, returns true if and only if this list contains at least one element e such

that (o==null ? e==null : o.equals(e)).

8. void ensureCapacity(intminCapacity) Increases the capacity of this

ArrayList instance, if necessary, to ensure that it can hold at least the number

of elements specified by the minimum capacity argument.

9. Object get(int index) Returns the element at the specified position in this

list. Throws IndexOutOfBoundsException if the specified index is is out of range

(index <

0 || index >= size()).

10. intindexOf(Object o) Returns the index in this list of the first occurrence of the

specified element, or -1 if the List does not contain this element.

11. intlastIndexOf(Object o) Returns the index in this list of the last occurrence of

the specified element, or -1 if the list does not contain this element.

12. Object remove(int index) Removes the element at the specified position in this

list. Throws IndexOutOfBoundsException if index out of range (index < 0 || index >=

size()).

13. protected void removeRange(intfromIndex, inttoIndex) Removes from this

List all of the elements whose index is between fromIndex, inclusive and

toIndex, exclusive.

14. Object set(int index, Object element) Replaces the element at the

specified position in this list with the specified element. Throws

IndexOutOfBoundsException if the specified index is is out of range (index < 0 ||

index >= size()).

15. int size() Returns the number of elements in this list.

16. Object[] toArray() Returns an array containing all of the elements in this list in

the correct order. Throws NullPointerException if the specified array is null.

17. Object [] toArray(Object[] a) Returns an array containing all of the elements in

this list in the correct order; the runtime type of the returned array is that of

the specified array.

18. void trimToSize() Trims the capacity of this ArrayList instance to be the

list's current size.

Notes By – Rajan Shukla

8. Write syntax and function of following methods of Date class :

i) getTime () ii) getDate () [S-15]

The Date class encapsulates the current date and time.

i. getTime():

Syntax:
long getTime()

Returns the number of milliseconds that have elapsed since January 1, 1970.

ii. getDate()

Syntax:

public int getDate()
Returns the day of the month. This method assigns days with the values of
1 to 31.

9. Write syntax and function of following methods of date class :

1) sethme () 2) getDay () [W-14]

1. setTime():

void setTime(long time):

the parameter time - the number of milliseconds.

Sets this Date object to represent a point in time that is time milliseconds after

January 1, 1970 00:00:00 GMT

2.getDay()

int getDay():

Returns the day of the week represented by this date.

The returned value (0 = Sunday, 1 = Monday, 2 = Tuesday, 3 = Wednesday, 4 =

Thursday, 5 = Friday, 6 = Saturday) represents the day of the week that contains or

begins with the instant in time represented by this Date object, as interpreted in the

local time zone.

10. Write any four mathematical functions used in Java.[W-14]

1) min() :
Syntax: static int min(int a, int b)
Use: This method returns the smaller of two int values.

2) max() :
Syntax: static int max(int a, int b)
Use: This method returns the greater of two int values.

3) sqrt()
Syntax: static double sqrt(double a)

Use : This method returns the correctly rounded positive square root of a double

Notes By – Rajan Shukla

value.

4) pow() :

Syntax: static double pow(double a, double b)

Use : This method returns the value of the first argument raised to the power of the

second argument.

5) exp()
Syntax: static double exp(double a)
Use : This method returns Euler's number e raised to the power of a double value.

6) round() :

Syntax: static int round(float a)

Use : This method returns the closest int to the argument.

7) abs()
Syntax: static int abs(int a)

Use : This method returns the absolute value of an int value.

11. What is use of setclass ? Write a program using setclass.[W-14]

The Set interface defines a set. It extends Collection and declares the behavior of a

collection that does not allow duplicate elements. Therefore, the add() method

returns false if an attempt is made to add duplicate elements to a set.

The Set interface contains only methods inherited from Collection and adds

the restriction that duplicate elements are prohibited.

Set also adds a stronger contract on the behavior of the equals and
hashCode operations, allowing Set instances to be compared meaningfully even
if their implementation types differ.

The methods declared by Set are summarized in the following table

Sr.No Methods Description

1

2

add()

clear()

Adds an object to the collection

Removes all objects from the collection

3 contains()
Returns true if a specified object is an element within the

collection

4
isEmpty() Returns true if the collection has no elements

5 iterator()
Returns an Iterator object for the collection which may be

 used to retrieve an object

6 remove() Removes a specified object from the collection

7 size() Returns the number of elements in the collection

Notes By – Rajan Shukla

Following is the example to explain Set functionality:

import java.util.*;

public class SetDemo

{

public static void main(String args[])

{

int count[] = {34, 22,10,60,30,22};

Set<Integer> set = new HashSet<Integer>();

try{

for(int i = 0; i<5; i++){

set.add(count[i]);

}

System.out.println(set);

TreeSet sortedSet = new TreeSet<Integer>(set);
System.out.println("The sorted list is:");
System.out.println(sortedSet);

System.out.println("The First element of the set is: "+ (Integer)sortedSet.first());

System.out.println("The last element of the set is: "+ (Integer)sortedSet.last());

}

catch(Exception e){}

}

}

Executing the program.
[34, 22, 10, 30, 60]
The sorted list is:

[10, 22, 30, 34, 60]

The First element of the set is: 10

The last element of the set is: 60

12. State syntax and describe any two methods of map class.[S-16]

The Map Classes Several classes provide implementations of the map interfaces. A

map is an object that stores associations between keys and values, or key/value pairs.

Given a key, you can find its value. Both keys and values are objects. The keys must be

unique, but the values may be duplicated. Some maps can accept a null key and

null values, others cannot.

Methods:

void clear // removes all of the mapping from map

booleancontainsKey(Object key) //Returns true if this map contains a mapping for the

specified key.

Boolean conainsValue(Object value)// Returns true if this map maps one or more keys to

the specified value

Boolean equals(Object o) //Compares the specified object with this map for equality

	Specific Objectives:
	Contents:
	5.1. Introduction to applets Applet Basics-
	5.1.1 Differentiate between applet and application (4 points). [W-14, S-15, W-15]
	5.1.2 Applet life Cycle [W-14, S-15]
	Idle state
	a) Born or initialization state [S-15]
	b) Running state: [S-15]
	c) Idle or stopped state:
	d) Dead state:
	e) Display state: [S-15]
	5.1.3 Applet Tag & Attributes [W-15, S-16] APPLET Tag:
	The syntax for the standard APPLET tag:
	</APPLET>
	Q. Explain <PARAM> tag of applet with suitable example. [S-15]
	<PARAM NAME = name1 VALUE = value1>
	Example
	Q. How can parameter be passed to an applet? Write an applet to accept user name in the form of parameter and print „Hello<username>‟. [W-15]
	To set up and handle parameters, two things must be done.
	<Applet code=”AppletDemo” height=300 width=300>
	</Applet>
	Program for an applet to accept user name in the form of parameter and print
	5.2. Graphics Programming
	Y
	Step to run an Applet
	5.2.1. Graphics Class
	Method Description
	5.2.2. drawString() [S-15]
	Syntax:
	5.2.3. Lines and Rectangle.
	5.2.3.2. drawRect() [W-14, S-15,W-15, S-16]
	Syntax: void drawRect(int top, int left, int width, int height)
	Q. Design an Applet program which displays a rectangle filled with red color and message as “Hello Third year Students” in blue color. [S-16]
	5.2.4. Circle and Ellipse
	Syntax: void drawOval(int top, int left, int width, int height)
	5.2.4.2. fillOval () [W-14]
	Q. Write a simple applet program which display three concentric circle. [S-16]
	Q. Write a program to design an applet to display three circles filled with three different colors on screen. [W-14, W-15]
	Output
	5.2.5.1. drawArc() [S-15, W-15]
	Syntax: (1)
	Example:
	5.2.6. Drawing polygons
	Syntax- void drawPolygon(int[] xPoints, int[] yPoints, int numPoints):
	Example-
	Q. Write the syntax and example for each of following graphics methods:
	Example for including all methods in a one program
	5.2.7. Setting color of an Applet
	Example (1)
	5.2.8. Font class
	Variable Meaning
	5.2.8.1. Use of font class [W-14, S-15]
	Syntax to create an object of Font class. [W-14]
	Font(String fontName, int fontStyle, int pointSize)
	5.2.8.2. Methods of font class
	Sr. No
	Example:-
	Q. Write method to set font of a text and describe its parameters. [S-16]
	void setFont(Font fontObj)
	Q. State purpose of get Available Font Family Name () method of graphics environment class.
	Syntax: (2)
	Parameters:
	Or
	4 Marks Questions:-

	Total Marks- 12
	1. What are stream classes ? List any two input stream classes from character stream [S-15, S-16]
	Reader stream classes:-
	Input Stream Classes
	2. What are streams ? Write any two methods of character stream classes. [W-15]
	The Character Stream Classes
	Methods of Reader Class
	Writer Class
	Methods of Writer class are listed below: -
	[**Note: any two methods from above list to be considered]
	4. Write any two methods of File and FileInputStream class each.[S-15, W-15] File Class Methods
	FileInputStream Class Methods:
	5. Explain serialization in relation with stream class. [W-14,W-15, S-16]
	Example: (1)
	6. Write a program to copy contents of one file to another file using character stream class.[S-15]
	7. What is use of ArrayList Class ? State any three methods with their use from ArrayList.[W-15, S-16]
	Methods of ArrayList class :
	8. Write syntax and function of following methods of Date class :
	ii. getDate() Syntax:
	9. Write syntax and function of following methods of date class :
	1. setTime():
	2. getDay()
	10. Write any four mathematical functions used in Java.[W-14]
	2) max() :
	3) sqrt()
	4) pow() :
	5) exp()
	6) round() :
	7) abs()
	11. What is use of setclass ? Write a program using setclass.[W-14]
	Following is the example to explain Set functionality:
	Executing the program.
	12. State syntax and describe any two methods of map class.[S-16]
	Methods:

